

ROHDE \& SCHWARZ

Diese Zeichnung ist unser Eigentum. Vervielfältigung,
unbefugte Verwertung, Mitteilung an andere ist
strafbar und schadenersatzpflichtig.
KURZWELLEN-EMPFÄNGER TYPE EK 07/2
Frequenzbereich $0,5 \ldots 30,1 \mathrm{MHz}$

I. 1 Technische Daten
$==\overline{=1}=\overline{=} \overline{=}=\pi==\pi====$
1. Allgemeines
2. Aufbau2

 2.1 Bemerkungen z.d.Ausf.Merkmalen d.Type EKo7/2
 2.1 Bemerkungen z.d.Ausf.Merkmalen d.Type EKo7/2 2
3. Elektrische Daten 3
4. Abmessungen und Gewichte 5
5. Röhren, Lampen u. Sicherungen 5
6. Zubehör 5
7. Abmessungszeichnung 6
I.2. Schaltungs-und Funktionsbeschreibung

1. Ubersicht S 1
2. HF-Teil S 4
3. Steueroszillator S 7
4. Steuerteil S 8
. Selektionsfilter S 14
5. $\mathrm{ZF}-\mathrm{Te} i l$ S 15
6. Regel-u. NF-Verstärker S 17
7. Eichoszillator S 21
8. NetzteilS 22
9. Frontplatte S 23
10. Rahmen mit Gesamtverdrahtung S 23
11. Uberwachung S 24
12. Blockschema S 27
I. 3 -Ubersichtsstromläufe
Blatt 1 ... 4 RH 4101 Bl. 1...4
II. 1 Montageanweisung

Anschliessen des Empfängers M 1
II. 2 Bedienungsanweisung

A) Frontplatte B 1
B) Anschlussplatte B 5
III Wartungsanweisung
W 1
IV Instandsetzung---V Schaltteillisten
RH 41001. Schaltteillisten2. Einzelstromläufe

B1. OA

I. 1 1. Allgemeines:

Der KW-Empfänger Type ER 07/2 überstreicht den Frequenzbereich $0,5 \ldots 30 \mathrm{MHz}$ in 12 Teilbereichen, wobei der eigentliche Kurzwellenbereich zwischen 3 und 30 MHz in 9 Bereiche von je 3 MHz Breite aufgeteilt ist. Das Gerät dient zum Empfang amplitudenmodulierter Sender (Betriebsarten $A_{1} \ldots A_{4}$), sowie mit Zusatzgeräten zur Aufnahme frequenzmodulierter Signale ($F_{1} \ldots F_{4}$, F'6). Es kann in Kurzwellenempfangsanlagen aller Art, insbesondere auch in Großstationen, sowie, zur Uberwachung von Frequenzbändern und für kommerzielle Telephonie-und TelegraphieDienste verwendet werden. Es kann auch leicht mit anderen Empfängern Eleicher Type direkt (ohne gesondertes Ablösegerät) zu Diversity-Empfangsanlagen zusammengeschaltet werden. Der Empfänger zeichnet sich durch besonders hohe Treffsicherheit und Konstanz aus. Er besitzt eine sehr gute wirksame Selektion und passt sich den besonderen Anforderungen für die verschiedenen Funkdienste an.

Die Konstanz und Treffsicherheit des Empfängers wird auf dem eigentlichen Kurzwellenbereich ($3 \ldots 30 \mathrm{MHz}$) allein durch die Ausbildung des ersten Oszillators bestimmt, dessen Frequenz aus der Oberwelle eines Quarzoszillators zusammen mit einem hochkonstanten Intervall-Oszillator gebildet wird, der in jedem Frequenzbereich ohne Umschaltung verwendet wird. Dieser Oszillator besitzt einen streng linearen Frequenzgang, sodass es möglich ist zusätzlich zur großen Hauptskala (mit ihren Bereichen von je 3 MHz -Breite) eine direkt in Frequenzen geeichte Feinskala zu benutzen, die jeweils Intervalle von 100 kHz anzeigt. Eine Frequenzablesung ergibt sich dann direkt aus der Summe der Anzeigen an der Grob-und Feinskala, wobei eine Frequenzauflösung von 300 Hz pro mm Skalenlänge im Bereich $3 \ldots 30 \mathrm{MHz}$ erreicht wird, während die Treffsicherheit ebenfalls bis 30 MHz hinauf Werte zwischen 500 Hz und $\uparrow \mathrm{kHz}$ annimmt.

Die Gestaltung und Dimensionierung der Uibrigen Schaltung des Gerätes sichert neben einer hohen Selektion, Spiegelselektion und Kreuzmodulationsfestigkeit eine einfache Kontrolle der Funktion und Abstimmung des Gerätes, eine optimale Anpassung
auch an schwierige Empfangsverhältnisse und eine einfache Zusammenschaltung mit Sendern (BK-Betrieb), Empfängern (Diversity-Empfang) und Zusatzgeräten verschiedenster Art (Registiergeräte, FM-Demodulatoren, Einseitenbandwähler, Meßgeräte usf.).
2. Aufbau:

Der Empfänger ist als Einzelgerät in einem Gerätestahlkasten (Abmessungen $540 \times 340 \times 535 \mathrm{~mm}$ für den 520-mm-Einschub) aufgebaut. Zur leichteren Auswechselung von Teilen ist das Gerät aus folgenden meist steckbar gestalteten Bausteinen aufgebaut:

```
HP-Teil,
Steuer-Oszillator,
Eich-Oszillator,
Steuerteil,
Selektionsfilter,
ZF-Teil,
Regel- und NF-Verstärker,
Netzteil,
Frontplatte,
```

Rahmen und Gesamtverdrahtung.

Auf der Frontplatte des Gerätes befinden sich in klarer und ubersichtlicher Anordnung die Instrumente für Eingangsspannung und Stufenüberwachung, die Grob- und Feinskala, Kopfhörerbuchsen und alle Bedienungsgriffe, welche im normalen Betrieb des Empfängers betätigt werden. Auf der Rückseite des Gerätes befinden sich in einer besonderen Anschlußwanne die gesamten Ein- und Ausgänge des Empfängers und einige Tastenschalter, welche beim Anschluß bestimmter Buchsen zu betätigen sind.
2.1 Bemerkungen zu den Ausführungsmerkmalen der Type EK 07/2:
a) EK 07 mit Anschlußplatte EK 07-34 (Normal-Ausführung),
b) EK 07 mit Anschlußplatte EK 07-42 (Ausführung zur Verwendung bei der Bundespost),
c) EK 07/2 mit Anschlußplatte EK 07-71 (VG-Normstecker). Die unter a) bis c) aufgeführten Empfängertypen sind mit Ausnahme der durch technische Verbesserungen innerhalb der verschiedenen Fertigungsserien bedingten Änderungen in Funktion und Schaltungstechnik völigg ubereinstimmend ausgeführt.
Die Ausstattung der dieser Beschreibung zugrundeliegenden Empfängertype EK 07/2 mit der aus der vorstehenden Typenzusammenstellung ersichtlichen besonders hochwertigen, mit VG-Normsteckern ausgerüsteten Stecker platte (Type EK 07-71) hat die augenfälligere Hervorhebung dieses tech nischen Zustandes in der Typenbezeichnung zweckmäßig erscheinen lassen.
3. Elektrische Daten:

Frequenzbereich insgesamt $0,5 \ldots 30,1 \mathrm{MHz}$

Fur beide Hauptbereiche gelten folgende Daten:
Zwischenfrequenz: Ber.I... IV 300 kHz
Ber.V...XII 1. ZF $3,3 \mathrm{MHz}$; 2. ZF 300 kHz
ZF-Bandbreiten $\pm 0,15 ; \pm 0,3 ; \pm 0,75 ; \pm 1,5 ; \pm 3,0 ; \pm 6 \mathrm{kHz}$
Betriebsarten A1, A2, A3, A4
mit Zusatzgeräten F1, F2, F3, F4, F6, A3a; A3b
Selektion (stat. Selektion)

stellung	20 db	40 db	60 db
$\pm 0,15 \mathrm{kHz}$	< $\pm 0,45 \mathrm{kHz}$	< $\pm 0,95 \mathrm{kHz}$	< $\pm 1,35 \mathrm{kHz}$
$\pm 0,3 \mathrm{kHz}$	$\bigcirc \pm 0,55 \mathrm{kHz}$	$< \pm 1,0 \quad \mathrm{kHz}$	$< \pm 1,5 \mathrm{kHz}$
$\pm 0,75 \mathrm{kHz}$	< $\pm 0,85 \mathrm{kHz}$	$\leq \pm 2,05 \mathrm{kHz}$	く $\pm 3,25 \mathrm{kHz}$
$\pm 1,5 \mathrm{kHz}$	< $\pm 1,0 \quad \mathrm{kHz}$	< $\pm 2,0 \mathrm{kHz}$	< $\pm 2,9 \mathrm{kHz}$
$\pm 3,0 \mathrm{kHz}$	< $\pm 1,0 \quad \mathrm{kHz}$	< $\pm 2,1 \mathrm{kHz}$	$< \pm 3,5 \mathrm{kHz}$
$\pm 6,0 \mathrm{kHz}$	$< \pm 1,7 \mathrm{kHz}$	$\leq \pm 3,5 \mathrm{kHz}$	く \pm 6,0 kHz

Abstand von der Bandgrenze
2F-Durchschlag $>90 \mathrm{db}$ im Hauptbereich A
Spiegelselektion Bereich I...IV: > 70 db
Bereich V..XII: >80 db
Kreuzmodulationsfestigkeit . . ein zu 50% modulierter Störsender im Abstand 20 kHz von einem auf Durchlaßmitte abgestimmten Nutzsender verursacht weniger als 10% Kreuzmodulation, wenn das Verhältnis der Störsen-der- zur Nutzamplitude < 60 db und die Störsendereingangsspannung <50 mV ist.
Grenzempfindlichkeit ca. 10 kTO
Störabstand $\begin{aligned} & \text { A3-Empfang } \\ & \begin{array}{l}\text { Bandbreite } \pm \\ \\ f_{\text {mod }}=1000 \\ H z\end{array}\end{aligned}$

RH 4100
Bl. 3
And. "d"

4. Abmessungen und Gewicht:

> Gerätestahlkasten $540 \times 340 \times 535 \mathrm{~mm}$ (für 520 mm Frontplatte)
> Gewicht ca. 65 kg
5. Röhren, Lampen und Sicherungen:

Anzahl

EAA 901
$=6 \mathrm{AL} 5 \mathrm{~W}$
= 6922
$=12 \mathrm{AT} 7 \mathrm{WA}$
($\approx 6 \mathrm{BY} 7$)
= 6688
$=6 \mathrm{BQ} 5$
$=0$ G 3
$=0 \mathrm{~A} 2$
= GL 5 S (El.Rö.Ges.)
$=\underset{(\text { Osram })}{\mathrm{Nr} .} 6435 / 6 \mathrm{~V} / 0,5 \mathrm{~A}$
6. Zubehör:

LK 333 (RuS)
FTS 20315 (RuS)
VG 95241

1 C DIN 41571
O,4 C DIN 41571
ECC 801 s
EF 805 s
E 180 F
EL 84
85 A 2
150 C 2
RL 290 (RuS)
RL 165 S (RuS)

3
3

1 (Netzkabel
1 (NF-Stecker)
1 (Koax-Stecker)

SCHALTUNGSBESCHREIBUNG CIRCUIT DESCRIPTION DESCRIPTION DES CIRCUITS

Der Kurzwellenempfänger EK 07/2 ist im eigentlichen Verstärkungeweg wie folgt aufgebaut: Die Antennenspannung gelangt über eine HF-Stufe mit drei abgestimmten Vorkreisen auf die erste Mischstufe. Die in 12 Teilbereichen umschaltbaren Vorkreise bewirken eine hohe Weitab-und Spiegelselektion und verhindern das Eindringen starker Störsender, welche nicht zu nahe der Empfangsfrequenz liegen (Kreuzmodulation!). In der ersten Mischstufe wird das Signal in den $\mathrm{Be}-$ reichen I ... IV $=0,5 \ldots 6,1 \mathrm{MHz}$ auf eine Z wischenfrequenz von 300 kHz umgesetzt und an die 1. ZF-Stufe geleitet. In den Bereichen V ... XII $=6,1 \ldots 30,1 \mathrm{MHz}$ wird zur Erhöhung der Spiegelfrequenzfestigkeit zuerst in eine 1. ZF von $3,3 \mathrm{MHz}$ umgesetzt. Uber ein Vierkreisfilter gelangt die Spannung an die zweite ${ }^{\text {Mischstufe, welche }}$ sie dann auf die 2. $Z F$ von 300 kHz umsetzt und an die 1. ZF-Stufe abgibt. Das Gerät arbeitet in diesem Falle also als Doppelüberlagerungsempfänger. Die erste $Z F-S t u f e$ ist mit 2 Vierkreisfiltern ausgerüstet, welche in 6 Bandbreitenstellungen umschaltbar sind und die Hauptselektion des Gerätes erzielen. Das Signal durchläuft sodann drei weitere $2 F-S t u f e n$, welche jeweils über zweikreisige Bandfilter miteinander gekoppelt sind. Danach erfolgt die Demodulation des Signals bezw: die Uberlagerung durch den A_{1}-Oszillator. Das depyodulierte Signal (NF) kann sodann in dem folgenden (abschaltbaren) Störbegrenzer symmetrisch abgekappt werden. In der Leitungsverstärkerstufe wird die NF verstärkt und an den Leitungsausgang abgegeben bezw. über einen Regler " NF-Regelung " an die folgende NF-Endstufe géleitet, an deren Ausgang ein Lautsprecher oder Kopfhörer angeschlossen werden können.

Um einen möglichst harmonischen Verlauf der Pegel an den einzelnen Verstärkerstufen zu erzielen, wurde die Regelschaltung des Empfängers besonders sorgfältig dimensioniert. An die 4. ZF-Verstärkerstufe ist ein besonderer zweistufiger Regelverstärker angeschlossen, dessen Ausgangsspannung an eine Anordnung mit 4 Dioden zur Erzeugung von fünf verschiedenen Regelspannungen geleitet wird. Durch die besondere Ausgestaltung der zur Erzeugung der Regelspannungen verwendeten Schaltung können mehrere Empfänger E K 07/2 unmittelbar zum Diversity-Empfang zusammengeschaltet werden, ohne daB ein Ablösegerät für die Regelspannung erforderlich wäre. Es werden drei

Regelarten im Gerät unterschieden. Neben der automatischen Regelung (AVC) und der Handregelung (MVC) ist eine Regelart " Hand + Automatik" vorgesehen, in der die Empfindlichkeit des Gerätes herabgesetzt werden kann, wobei aber Signale, die den eingestellten Schwellwert überschreiten, in normaler Weise ausgeregelt werden (siehe auch weiter unten!).

Ein besonderer Unterschied gegenüber normalen Empfängern ist die Steuerung des ersten Oszillators in den Bereichen V mit XII. Während in den Bereichen I mit III ($0,5 \ldots 3,1 \mathrm{MHz}$) der erste Oszillator (Hauptoszillator) in gewohnter Weise über eine Trennstufe seine Frequenz an die erste Mischstufe abgibt, wird der erste Oszillator im Bereich IV durch einen gesonderten Oszillator (Steueroszillator) ersetzt. Da dieser Oszillator nur einen einzigen (relativ niedrig liegenden) Frequenzbereich ($3,4 \ldots 6,4 \mathrm{MHz}$) hat, konnte er mit besonders hoher Frequenzkonstanz versehen werden und besitzt ausserdem einen streng linearen Frequenzgang. Seine Frequenz kann mit Hilfe einer Grobskala und einer 30:1 untersetzten Feinskala eingestellt werden. Es ergibt sich so eine ausserordentlich hohe Skalenauflösung, wobei jeder Umdrehung der Feinskala exakt eine Änderung von 100 kHz entspricht. In den genannten Bereichen (I ... IV $=0,5 \ldots 6,1 \mathrm{MHz}$) ist die Oszillatorfrequenz gegenüber der Eingangsfrequenz jeweils um 300 kHz höher ($\mathrm{ZF}=300 \mathrm{kHz}$).

In den Bereichen V ... XII $=6,1 \ldots 30,1 \mathrm{NHz}$ steuert wieder der Hauptoszillator die erste Mischstufe an. Die von ihm abgegebene Frequenz ist nun jeweils um $3,3 \mathrm{MHz}$ größer als die Eingangsfrequenz ($Z \mathrm{~F}=3,3 \mathrm{MHz}$) und wird über eine Nachstimmschaltung geregelt. Es handelt sich hierbei um eine Phasennachstimmung mit einem Frequenzfehler von $\pm 0 \mathrm{~Hz}$. Die Nachstimmung des Hauptoszillators erfolgt durch einen Kondensator, dessen Wirksamkeit über 2 Dioden gesteuert wird. Zu diesem Zweck wird die Frequenz des Hauptoszillators zusammen mit einer Oberwelle eines 3 MHz -Schwingquarzes auf die Frequenz des Steveroszillators umgesetzt und mit letzterer an einer Phasenbrücke verglichen, welche eine Nachstimmspannung liefert. Die eigentlichen frequenzbestimmenden Elemente sind also der Quarz mit seinen Harmonischen und der Steueroszillator.

Ein Eichoszillator mit einem 300 kHz -Quarz gestattet mit dessen Oberwellen die Eichung des Gerätes zu kontrollieren. Die Frequenz des Eichquarzes kann über einen Knopf " Abstimmkontrolle " auch in die letzte Z wischenfrequenzstufe eingespeist werden. Dadurch ist es besonders einfach, die exakte Abstimung des Empfängers bei der Bil-
dung des Schwebungs-Nulls zwischen dem gewünschten Träger und der $300 \mathrm{kHz}-$ Schwingung zu kontrollieren. Mit dem Schalter " Uberwachung " und dem zugehörigen Instrument können die Ströme der einzelnen Verstärkerröhren des Empfängers kontrolliert werden.

Das Netzteil des Empfängers ist durch eine HF-Verdrosselung gegen das Eindringen von Störfrequenzen auf der Netzleitung geschützt. Es liefert alle vom Gerät benötigten Heiz-, Anoden-und Vorspannungen. Es werden nur Trockengleichrichter verwendet, zwei der abgegebenen Spannungen sind durch Stabilisatoren konstant gehalten. Der Netzschalter des Gerätes hat vier Stellungen:
Aus $\quad=\quad$ alle Spannungen abgeschaltet
Vorheizen $=$ Heiz-und Vorspannungen eingeschaltet, Anoden-und Schirragitterspannungen nicht eingeschaltet
Ein $($ hell $)=\quad$ alle Spannungen eingeschaltet, Skalenbeleuchtung hell
Ein (dunkel) $=$ alle Spannungen eingeschaltet, Skalenbeleuchtung dunkel

Ispannunger
Regelverst.

Telegr:Überlagerer ※

2. HF-Teil: (Hierzu UbersichtsstromlđufःBl. 1)

Das HF-Teil enthält die HF-Verstäfkerstufe mit ihren Kreisen, die erste Mischstufe, den Hauptoszillator mit seinen Kreisen, zwei weitere Verstärkerröhren und zwei Nachstimmdioden zur Frequenzkorrektur des Hauptoszillators und einen Überspannungsschutz (Rl 1).

Die auf der Rückseite des Empfängers befindlichen Antenneneingänge: "Antenne 50... 75Ω " (für niederohmige koaxiale Zuleitungen mit $Z=$ $50 . . .70 \mathrm{Ohm}$) und "Antenne hochohmig " (für Eindrahtantennen usf.) werden über koaxiale Leitungen an den Trommelschalter (Frequenzbe- $_{\text {(}}$ (reichschalter S 1) im HF-Teil geführt, wobei der hochohmige Eingang über den Koppelkondensator C 244 an das " heiße Ende " des 1. Schwingkreises gelegt ist. Der niederohmige Eingang läuft über den Ruhekontakt a1•des Relais Rs A an einen Abgriff der Spule des 1. Schwingkreises bzw. bei den Bereichen über $15,1 \mathrm{MHz}$ ebenfalls über Serienkondensatoren an das "heiße Ende " des Kreises. Das Relais Rs A legt bei der Eichkontrolle des Empfängers (d.h. beim Drücken der Taste S 8 " Eichquarz 300 kHz ") den Ausgang dés Eichoszillators (siehe unten) anstelle der $50 \ldots 75-\Omega$-Buchse an den Empfängereingang. Die Glimmlampe R1 1 zündet bei unzuläßig hohen Eingangsspannungen und schützt so den Empfänger = Überspannungsschutz.

Zwischen der Antenne und die HF-Stufe Rö 11 ist ein abgestimmtes und induktiv gekoppeltes Bandfilter geschaltet. Durch die Anordnung eines Bandfilters anstelle eines Einzelkreises vor der 1. Verstärkerröhre wird erreicht, daß auch sehr starke Eingangsspannungen in der Nähe befindlicher Sender keine Ubersteuerung der 1. Stufe bewirken, solange ihre Frequenz nicht allzu nahe der abestimmten Frequenz liegt. Zur Anpassung des Eingangswertes wird das Steuergitter der HF-Stufe Rö 11 über den Koppelkondensator C 246 jeweils an eine Anzapfung des Sekundärkreises gelegt. Dem Steuergitter der Röhre wird auch über Siebglieder eine besondere Regelspannung (" Rsp II ") zugeführt. Die rauscharme Regelpentode ist in Kathodenbasisschaltung geschaltet und ermöglicht eine hohe Empfindiichkeit des Empfängers. Sie verstärkt das empfangene Signal soweit, daß der Rauschbetrag der Mischstufe die Empfindlichkeit des Empfängers nicht mehr beeinträchtigt.

Zwischen HF-Stufe und die 1.Mischstufe Rö12I ist ein weiterer abgestimmter Vorkreis geschaltet. Beide Röhren sind so lose (durch Spulenabgriff bzw. kapazitiven Spannungsteiler) an diesen Kreis
angekoppelt, daß bei Röhrenwechsel (und den evtl. damit verbundenen Kapazitätsänderungen) keine Verstimmung erfolgt. Durch diese starke Vorselektion mit 3 abgestimmten Kreisen vor der ersten Frequenzumsetzung werden Mehrdeutigkeiten (Spiegelfrequenzen usw.) vermieden und eine hohe Kreuzmodulationsfestigkeit erreicht. Gleichzeitig wird die Abstrahlung der Oszillatorfrequenz durch den Empfänger soweit reduziert, daß benachbarte Enpfänger nicht mehr gestört werden. Die 1. Mischstufe ist mit dem System I einer rauscharmen Doppeltriode aufgebaut. Sie arbeitet als additiver Mischer, wobei die Oszillatorspannung an die Kathode, die HFEingangsspannung an das Steuergitter gegeben wird. Zwischen den in Serie liegenden Kathodenwiderständen $R 27$ und $=28$ kann über die daran angeschlossene Buchse "Ausgang 1. Mischrohr" eine ZF-Spannung z.B. zum Anschluß eines Panoramazusatzes abgenommen oder zu Meßzwecken eine Kontrollfrequenz eingespeist werden.

Zwischen den Oszillator und den Mischer ist das System II der Doppeltriode $=$ "Einkopplung 1. Mischstufe" geschaltet, so dab der Oszillator von der Eingangsfrequenz nicht beeinflußt wird.
Die Oszillatorröhre Rö $13^{I}=$ "Hauptoszillator" (mit abgestimmtem Gitterkreis und induktiver Rückkopplung an der Anode) liefert die von der 1. Mischstufe benötigten Oszillatorspannungen. In den Bereichen I - IV liegt die Oszillatorfrequenz jeweils 300 kHz über der Eingangsfrequenz, in den Bereichen $V-X I I$ jeweils $3,3 \mathrm{MHz}$ uber der Eingangsfrequenz. Im Bereich IV arbeitet Rö 13^{I} nicht als Oszillator, sondern als Verstärkerstufe mit abgestimmtem Anodenkreis, da in diesem Falle die Oszillatorfrequenz über den "b 2 "-Kontakt des Relais RsB vom Steueroszillator (s.u.) geliefert wird. Mit dem "b 1 "-Kontakt des gleichen Relais wird die auch durch die Funktion der Begrenzerdiode ($\mathrm{RO} 74^{I}$) und den (einstellbaren) Widerstand R 425 bestimmte Vorspannung am Steuergitter der 1. Mischstufe (Rö 12) für den Bereich IV gesondert umgeschaltet und eine günstigere Lage des Arbeitspunktes durch die Zuschaltung eines (einstellbaren) Parallelwiderstandes (R 48) zum Widerstand R 425 bestimmt. Dadurch wird ein Optimum an Kreuzmodulationsfestigkeit in diesem Bereich erzielt. Das Relais Rs B wird im Bereich IV uber die Bereichsschalterebene S 1 II R zum Anziehen gebracht. Falls diese Buchse "Hauptoszillator Fremd" benutzt wird (z.B. bei der Zusammenschaltung zweier Empfänger auf der gleichen Frequenz $=$ Zwillingsempfang mit gemeinsamem Oszillator) und die über der Buchse liegende Taste S 14 gedrückt wird, so zieht das Relais Rs C.

Dieses Relais (C) schaltet dann mit seinem " c 1 "-Kontakt das Gitter des Systems II der Doppeltriode (Rö 12) (Einkopplung 1. Mischstufe) vom Hauptoszillator (eigen) um auf den Eingang " Hauptoszillator fremd ", während es mit seinem " c2 - Kontakt" den Kathodenwiderstand des Hauptoszillators (Rö 13 I) von der Röhre abtrennt und damit den Hauptoszillator außer Funktion setzt.

Der Hauptoszillator steuert auch das (im gleichen Röhrenkolben gelegene) System Rö 13 .II = Auskopplung Hauptoszillator, welches als Anodenbasisverstärker geschaltet ist und die an der Kathode ausgekoppelte Oszillatorspannung über C 269 an die Buchse "Hauptoszillator Ausgang" (K 18) abgibt. Die an die Röhre Rö 43 im Steuerteil geleitete Oszillatorspannung wird parallel -um Eingang der Röhre Rö 13 II über den Kondensator C 276 und das Kabel K2 dem Steuerteil zugeführt.

In den Bereichen V ... XII werden die Nachstimmdioden G1 1/G1 2 durch den Bereichschalter S 1 (jeweils über einen Trimmer C 204 ... C 239) an den Gitterkreis des Oszillators geschaltet. Die Diode Gl 2 erhält über ein Siebglied (R 46/C 290/ C 289) eine feste Vorspannung von +10 V . Die Diode $G 11$ ist durch C 288 für HF geerdet und erhält eine Steuerspannung von der Nachstimmschaltung im Steuerteil. Entsprechend der Höhe der Steuerspannung ändert sich der Innenwiderstand der Dioden, so daß die Kapazität des jeweils eingeschalteten Trimmers parallel zum Schwingkreis gegen Masse wirksam wird und die Frequenz des Hauptoszillators auf den Sollwert bringt.

Der Steueroszillator ist ein hochkonstanter abstimmbarer Oszillator, welcher den Bereich 3,4 ... 6,4 MHz mit streng linearem Frequenzgang überstreicht. Er ist in Gleichlauf mit den 3 Vorkreisen und dem Kreis des Hauptoszillators xxxxxxxxxy und $x x$ ermöglicht die hohe Skalenauflösung und Treffsicherheit des Empfängers im Hauptbereich A ($3,1 \ldots 30,1 \mathrm{MHz}$), da er im Bereich IV anstelle des Hauptoszillators die 1. Mischstufe ansteuert und in den Bereichen V ... XII zur Korrektur der Frequenz des Hauptoszillators verwendet wird. Infolge der Linearität des Frequenzganges des Steueroszillators und der Tatsache, daß die BereicheIV ... XII jeweils genau 3,0 MHz überstreichen, kann auch die gegenüber der großen Grobskala im Verhältnis 30:1 untersetzte Feinskala direkt in Frequenzen geeicht werden, wobei jeder Umdrehung der Feinskala exakt 100 kHz entsprechen. Die Frequenzablesung ergibt sich so direkt aus der Summe der Anzeigen auf Grob-und Feinskala. Der Steueroszillator ist luftdicht abgeschlossen. Zur Beseitigung der Restfeuchtigkeit dient eine Silica-gel-Patrone, welche unter einigermassen normalen Betriebsbedingungen auch nach jahrelangem Betrieb nicht ausgewechselt werden muß.

Die Steueroszillatorstufe Rö 21 ist mit abgestimmtem Gitterkreis und induktiver Rückkopplung an der Anode ausgeführt. Der temperaturkompensierte Schwingkreis ist über den Kondensatorspannungsteiler C 305 - C 306 an die Oszillatorröhre angeschlossen. Der Wert dieser Kondensatoren ist so gewählt, daß der Kreis bei Röhrenwechsel nicht nachgetrimmt werden muß, da eine Änderung der Röhrenkapazität im Vergleich zu C 306 vernachlässigbar klein bleibt.

Die an die Anode der Oszillatorröhre lose angekoppelten Verstärker 1 u. $2=R \ddot{ } 22 I$ u. II verstärken die Oszillatorspannung auf den benötigten Wert und verhindern eine Rückwirkung der Verbraucher auf den Oszillator. Die Röhre Rö $22 I I$ hat einen unsymmetrischen Ausgang, welcher im Bereich IV zu dem (in diesem Bereich als Verstärker arbeitenden) Hauptoszillator (s.o.) führt, einen weiteren unsymmetrischen Ausgang, an welchen die Buchse " Steueroszillator Ausgang angeschlossen ist und einen symmetrischen Ausgang, welcher an die Phasenbrücke im Steuerteil angeschlossen wird.

Das Steuerteil enthält die 2. Mischstufe mit einem 4-Kreisfilter für die 1. ZF $3,3 \mathrm{MHz}$, einen Quarzoszillator und die Stufen, welche in den Bereichen V ... XII für die Nachstimmung des Hauptoszillators benötigt werden. :

In den Bereichen I ... IV wird von der 1. Mischstufe eine Zwischenfrequenz von $0,3 \mathrm{MHz}$ abgegeben. Diese wird in den Steuerteil geführt und über die Ruhekontakte"i2"und"k2"der Relais Rs J und Rs K zur 1. ZF-Stufe im Baustein " Selektionsfilter " weitergeleitet. In den Bereichen V ... XII würde bei einer Zwischenfrequenz von $0,3 \mathrm{MHz}$ der Abstand der Spiegelfrequenz von der Empfangsfrequenz zu klein. Man verwendet daher in diesen Bereichen eine 1. Zwischenfrequenz von $3,3 \mathrm{MHz}$, welche in der 2. Mischstufe Rö 41 I auf die 2. Zwischenfrequenz von $0,3 \mathrm{MHz}$ umgesetzt wird. Der Bereichschalter $S 1 I I R(i m$ HF-Teil) bringt die Relais Rs J und Rs K zum Anziehen, so dass das von der 1. Mischstufe kommende ZF-Signal ($3,3 \mathrm{MHz}$) über den Arbeitskontakt i2 und das kapazitiv gekoppelte Vierkreisfilter an das Steuergitter der 2. Mischröhre gelangt. Aus Anpassungsgründen ist die Zuleitung zum Filter und der Anschluß der Mischstufe jeweils an Anzapfungen der Spulen des 1. bezw. 4. Kreises gelegt. Die wieder mit einer rauscharmen Triode bestückte additiv arbeitende 2. Mischstufe erhält an ihrer Kathode die Oszillatorspannung von $3,0 \mathrm{MHz}$ vom 2. Röhrensystem = Rö 41II "Einkopplung 2. Mischstufe "., welche vom 3 MHz-Quarzoszillator Rö 42 angesteuert wird.
Der 3 MHz -Quarzoszillator Rö 42 arbeitet analog einem Triodenoszillator mit abgestimmtem Gitter-und Anodenkreis. (" Huth-KühnSchaltung "): Der am Steuergitter der Röhre liegende Quarz mit einer Resonanzfrequenz von 3 MHz wird auf seiner Grundschwingung in Parallelresonanz erregt. Mittels des Trimmers C 534 wird der Quarz genau auf seine Sollfrequenz "gezogen". Als "Triodenanode" ist hier das Schirmgitter der Röhre verwendet, an welches ein Schwingkreis angeschlossen ist. Dieser Kreis ist zur Einleitung und Aufrechterhaltung der Schwingungen (Rückkopplung über die innere Röhrenkapazität $\mathrm{C}_{\mathrm{g} 1} / \mathrm{g} 2$) gegenüber dem Quarzkreis induktiv verstimmt (auf eine höhere Frequenz abgestimmt). Am abgestimmten Anodenkreis der Röhre erhält man so entkoppelt vom eigentlichen Schwingsystem eine Frequenz von $3,0 \mathrm{MHz}$. Diese wird sowohl über einen HF-Transformator L 65 zur Röhre Rö $41 I I$ u. I (2. Mischstufe) als auch über den Ruhekontakt'd1 des Relais Rs D an die zu Kontroly zwecken vorgesehene Buchse " 3 MHz eigen/fremd " geleitet, wo sie
abgenommen werden kann. Wenn die über der Buchse befindiche Taste S 12 gedrückt wird, zieht das Relais Rs D, wodurch die Buchse an das Gitter der Röhre und in deren Kathodenleitung ein Kathodenwiderstand R 211 geschaltet wird, während der Schwingquarz zugleich kurzschlußmäßig überbrückt ist. Rö 42 arbeitet dann als Verstärker für eine von außen eingespeiste Frequenz von 3 MHz .
An den Anodenkreis des Quarzoszillators ist auch die Verzerrerdiode Gl 4 angeschlossen, welche aus der Frequenz 3 MIIz ein OberwellenSpektrum erzeugt.
Dieses Spektrum wird weitergeleitet an ein vom Frequenzbereichschalter mitgeschaltetes Dreikreisfilter (L 77, L78, L 79 usf.), welches in den Bereichen V mit XII jeweils eine andere Quarzoberwelle aussiebt: Bereich V: $15,0 \mathrm{MHz}$, VI: $9,0 \mathrm{MHz}$, VII: $12,0 \mathrm{MHz}$, VIII: 15,0 MHz ,' IX: $18,0 \mathrm{MHz}, X: 21,0 \mathrm{MHz}, X I: 24,0 \mathrm{MHz}$, XII: $27,0 \mathrm{MHz}$.
An den Ausgang des Dreikreisfilters ist die 2. Mischstufe Md2 angeschlossen, welche mit 4 Dioden (schaltungsmäßig gleich einem Ringmodulator) zwischen L 79 und den Transformator $\operatorname{Tr} 4$ geschaltet ist. Der $H_{\text {auptoszillator-Verstärker Rö }} 43$ erhält über Rö $13 I I$ (Hauptos-zillator-Auskopplung) die vom Hauptoszillator Rö $13 I$ abgegebene Frequenz und speist sie nach Verstärkung über den Transformator $\operatorname{Tr} 3$ symmetrisch in die 3. Mischstufe (jeweils in die Mitte der Transformatoren L 79 und $\operatorname{Tr} 4$) ein. In den Bereichen VI ... XII ergibt sich so jeweils eine vom Hauptoszillator abgeleitete Frequenz von $3,4 \ldots 6,4 \mathrm{MHz}$ (siehe Tabelle nächste Seite), welche später mit der Frequenz des Steueroszillators $=3,4 \ldots 6,4 \mathrm{MHz}$ verglichen wird. Im Bereich V wird die Frequenz des Hauptoszillators zur Vermeidung von Pfeifstellen $2 \times$ umgesetzt. Am Ausgang des 3 . Mischers ergibt sich aus der Frequenz des Hauptoszillators $9,4 \ldots 12,4 \mathrm{MHz}$ mit der Quarzoberwelle 15 MHz eine Frequenz von $24,4 \ldots 27,4 \mathrm{MHz}$. Diese wird über den Bereichschalter S 1 IX und ein festabgestimmtes Vierkreisfilter (Bandpaß) (welches nur die Frequenzen 24,4 ... 27,4 MHz durchlässt) der 4. Misohstufe Md 1 zugeleitet, welche den gleichen Schaltungsaufbau wie Md 2 zeigt.
Zur Umsetzung auf die gewünschte Vergleichsfrequenz von 3,4... $6,4 \mathrm{MHz}$ wird nun vom 4 . Mischer eine Uberlagererfrequenz von 21,0 MHz benötigt, die ihm ebenfalls vom quarzoszillator über ein Vierkreis-

filter geliefert wird, welches nur die Spektrumsfrequenz 21 MHz durchläßt.

Die vom Hauptoszillator abgeleitete Vergleichsfrequenz (3,4 ... $6,4 \mathrm{MHz}$), welche in den Bereichen VI ... XII am Ausgang des 3. Mischers, im Bereich V am Ausgang des 4. Mischers auftritt, wird über die Bereichschalter S 1 IX ... S 1 XI dem dreistufigen Steuerverstärker Rö $44 \ldots$ Rö 46 zugeleitet. Dieser ist mit 3 steilen Pentoden (E 180 F) bestückt. Die Schwingkreise des Verstärkers dienen zur Korrektur des Frequenzganges. An die Anode der 3. Stufe ist über einen Kondensator ein Spannungswerdoppler mit den Gleichrichtern Gl 6 und Gl 7 angeschlossen, welcher eine Regelspannung für die 3 Stufen liefert, so daß diese eine konstante Ausgangsspannung abgeben. Die Diode GI 5 dient zur Verzögerung der Regelspannung. Zur Kompensation der an den besonders grob bemessenen Kathodenwiderständen (Gleich-strom-Gegenkopplung) auftretenden (für normalen Betrieb zu hohen) Gittervorspannung dient eine positive Gegenspannung, welche von dem an einer stabilisierten Spannung von + 150 V liegenden Spannungsteiler R 254 ... 256 gewonnen wird.

Die von der Röhre Rö 46 mit konstanter Amplitude abgegebene (vom Hauptoszillator abgeleitete) Frequenz von $3,4 \ldots 6,4 \mathrm{MHz}$ wird an die Primärwicklung der Phasenbrücke gegeben, welche aus den Gliedern $\operatorname{Tr} 5, \mathrm{Gl}$ 8, G1 9, R 259, R 260, C 638, C 639 besteht. In den Mittelabgriff der Sekundärwicklung von $\operatorname{Tr} 6$ und den Verbindungspunkt R 259/ R 260 wird symmetrisch die vom Steueroszillator kommende " Vergleichsfrequenz " von $3,4 \ldots 6,4 \mathrm{MHz}$ gegeben, so daß also in der Phasenbrücke die beiden. Frequenzen verglichen werden. Die sich ergebende Ausgangsspannung der Phasenbrücke wird dazu verwendet die umgesetzte Frequenz des Hauptoszillators mit der Frequenz des Steueroszillators zu synchronisieren = den Hauptoszillator auf seine Sollfrequenz nachzustimmen. (Siehe Prinzipschaltbild " Frequenz-Nachregelung " auf der folgenden Seite!).
Die Phasenbrücke gibt bei Synchronisation des Hauptoszillators durch den Steueroszillator eine Gleichspannung ab. Im nichtsynchronisierten Zustand des Hauptoszillators liefert die Phasenbrücke eine Wechselspannung, deren Frequenz dem Unterschied der beiden verglichenen Frequenzen entspricht. Diese beiden Zustände werden benützt, verschiedene Hilfsstufen zu steuern, wobei selbst bei Frequenzdifferenzen bis zu 250 kHz die Frequenz des Hauptoszillators noch sicher gefangen und mit einer Genauigkeit von $\pm 0 \mathrm{~Hz}$ nachgestimmt wird.

Die im nichtsynchronisierten Zustand an der Brücke auftretende Wechselspannung wird über R 272 und C 650 an das Gitter des Fanghilfeverstärkers Rö 47II geleitet, dort verstärkt, in der folgenden Spannungsverdopplerschaltung mit Gl 10/Gl 11 gleichgerichtet und auf den doppelten Wert gebracht. Die so gewonnene positive Steuerspannung wird über den Begrenzer Gl 12 auf die parallelgeschalteten Steuer gitter der Fanghilfsstufen Rö $48 I$ u.II geleitet, so daß die dort über den Spannungsteiler R 275 / R 276 / R 279 zugeleitete negative Sperrspannung nicht mehr wirksam ist. Die an die Kathoden beider Röhren vom Netztransformator gegenphasig zugeführte Wechselspannung von ca. $1,5 \mathrm{~V} / 50 \mathrm{~Hz}$ wird in den Fanghilfsstufen Rö $48 I$ und II verstärkt und über den Transformator $\operatorname{Tr} 6$ als " Suchspannung " über die Brücke an die Steuerleitung abgegeben, so daß am Hauptoszillator uber den Steuerleitungsverstärker Rö $47 I$ und die Nachstimmdioden GI 1/ Gl 2 (mit den Kondensatoren C 204 ... C 239) ein groBer Frequenzhub erzeugt wird. Dadurch wird die Frequenzdifferenz spätestens im Verlauf einer Periode der Suchspannung so klein, daß die Synchronisation der Vergleichsfrequenz mit der Steueroszillatorfrequenz erreicht wird. (Der Frequenzabstand, bei welcher die Synchronisation erfolgt, wird mit " Fangbereich " bezeichnet). Die Brücke gibt dann keine Wechsel-. spannung mehr $a b$, so daß die Fanghilfsstufen sofort gesperrt werden. Innerhalb des Fangbereiches wird von der Brïcke eine Gleichspannung abgegeben, die den Frequenzunterschied dann auf den Wert von $\pm 0 \mathrm{~Hz}$ bringt.

Das Selektionsfilter enthält $z w e i$ in 6 Stufen schaltbare Vierkreisfilter und die erste ZF-Stufe. In dieser Baugruppe erfolgt die Hauptselektion des Empfängers.

Das von der 1. bezw. 2. Mischstufe kommende $2 F-S i g n a l$ von 300 kHz gelangt zuerst zum vorderen Vierkreisfilter. Dieses besteht aus 4 kapazitiv gekoppelten Kreisen, welche durch den Schalter S 2 " ZF-Bandbreite " über verschieden große Kondensatoren mehr oder minder stark gekoppelt werden. In der Schalterstellung " $\pm 0,1 \mathrm{kHz}$ ' wird zwischen den 2. und den 3. Kreis anstelle eines Koppelkondensators ein Filterquarz geschaltet, dessen Parallelkapazität in die Kapazität des parallelgeschalteten Sperrkreises mit eingeht und so eliminiert wird. Entsprechend den einzelnen Bandbreitenstellungen werden den Kreisen Trimmer und Widerstände paralle]geschaltet, sodass sich aus den Resonanzkurven der gegeneinander verstimmten Kreise jeweils eine Gesamtresonanzkurve ergibt, welche im Bereich der gewünschten Bandbreite horizontal verläuft, jedoch beiderseits davon sehr steile Flanken aufweist.

Die Kopplung zwischen dem letzten Kreis und. dem Steuergitter der 1. ZF-Stufe Rö 51 wird ebenfalls mit umgeschaltet, sodass diese Röhre eine von der Bandbreitenschaltung unabhängige $2 F-S p a n n u n g$ erhält. Die Röhre Rö 51 erhält eine besondere Regelspannung (" $1 / 3$ Rsp I ").

An die Anode der Röhre ist das zweite Vierkreisfilter lose angekoppelt (Spulenabgriff). Dieses Filter ist analog dem vorderen Vierkreisfilter (jedoch ohne Filterquarz) aufgebaut.

Das ZF-Teil dient zur weiteren Verstärkung und zur Demodulation des $300 \mathrm{kHz}-2 \mathrm{~F}-\mathrm{Si}$ gnals und enthält 3 ZF-Verstärkerstufen, den Demodulator, einen abschaltbaren Störbegrenzer und den Regler zur Einstellung des Pegels des an den NF-Teil abgegebenen NF-Signals.

Das 2F-Signal gelangt vom zweiten Vierkreisfilter des Selektions-
 Koppelkondensatoren an das Gitter der 2. ZF-Stufe Rö 61. An den einstellbaren Kathodenwiderstand R. 354 " Verstärkungskorrektur " können bei Diversity-Empfang die Empfänger auf gleiche Verstärkung bezw. Regelspannung eingestellt werden.

Uber ein kapazitiv gekoppeltes zweikreisiges Bandfilter gelangt das ZF-Signal an die 2. ZF-Stufe Rö 62. Die Stufen mit Rö 61 und 62 erhalten eine gemeinsame Regelspannung " Rsp I " .

Das ZF-Signal wird über ein weiteres kapazitiv gekoppeltes Bandfilter an die 4. ZF-Stufe Rö 6 geleitet. Diese Röhre erhält die Regelspannung " $1 / 5$ Rsp I ".
Vom Gitterkreis wird das ZF-Signal über den Kondensator C 921 auch an den Regelverstärker Rö 71 usf. (s.weiter unten)Punkt 7) geleitet. Am nicht überbrückten Kathodenwiderstand der 4. ZF-Stufe Rö 63 kann uber den Koppelkondensator und die Buchse " ZF-Ausgang 300 kHz " (auf der Rückseite des Empfängers) das ZF-Signal abgenommen und an einen Seitenbandwähler, FM-Demodulator, Fernschreibertastgerät etc. geleitet werden.

Über ein weiteres Bandfilter, an dessen Primärkreis bei A1-Sendungen die Ausgangsfrequenz des Telegrafie-Uberlagerers Rö 76I eingespeist werden kann, wird das 2F-Signal an den " Demodulator G1 14" geleitet. An ihm entsteht aus einem amplitudenmodulierten ZF -Signal durch Gleichrichtung das NF-Signal. Bei A1-Empfang wird an ihm die hörbare Differenzfrequenz aus der (in seiner Frequenz einstellbaren) Frequenz des A_{1}-Überlagerers und dem (getasteten) HF/ZF-Signal abgenommen. (Uber den Widerstand R 382 ist eine Meßbuchse an den Demodulator angeschlossen). Das NF-Signal gelangt vom Abgriff des Reglers R 380 "Leit.Pegel"an den Ruhekontakt eII des Relais Rs E, die Ruhekontakte fII u. fI des Relais Rs F und den Koppelkondensator C 935 zum NF-Verstärker.

Wenn die Schaltbuchse " NF-Eingang " auf der Empfängerrückseite beschaltet wird, so wird der Schaltkontakt $S 13$ betätigt, welcher
das Relais Rs E zum Anziehen bringt. Damit wird der Demodulator abgeschaltet und dafür die von aussen (z.B. von einem auch an die Buchse " ZF-Ausgang " angeschlossenen FM-Demodulator usf.) zugeführte NF weitergeleitet.

Wenn der Regler R 602 "Störbegrenzer " (an der Frontplatte) von seiner Stellung " Aus " auf " Ein " geschaltet wird, zieht das Relais Rs F, sodaß die NF über den Störbegrenzer Rö 64 geleitet wird. Dieser besteht aus zwei in Serie geschalteten Diodensystemen, deren Kathoden direkt verbunden sind und über den Widerstand R 389 eine am Regler $R 602$ " Störbegrenzer " einstellbare negative Spannung erhalten. In beiden Dioden fliesst über die Widerstände R 388 bezw. R 387 ein Anodenstrom und die ankommende NF-Spannung kann beide Dioden passieren. Negative Störimpulse, welche die eingestellte Kathodenspannung der 1. Diode uberschreiten, machen die Anode dieser Diode negativ gegen die Kathode, sodass die Diode gesperrt wird,d.h. kein Strom mehr fliessen kann. Positive Störimpulse, welche die eingestellte Spannung überschreiten, machen die Kathode der zweiten Diode " positiver " wie deren Anode, sodaß in diesem Fall die zweite Diode gesperrt wird. Die von den Störimpulsen befreite NF-Spannung gelangt dann zur NF-Vorstufe.
7. Regel-und NF-Verstärker (Hierzu J̈bersichtsstromlauf Bl. 3) Dieser Baustein enthält den zweistufigen NF-Verstärker, den Tele-grafie-($\mathrm{A}_{1}-$) Uberlagerer, desgleichen die besonders ausgebildete Schaltung zur Erzeugung der verschiedenen Regelspannungen mit einem zweistufigen Regelverstäker und einer Anordnung mit 4 Dioden. (Hierzu auch Prinzipschaltbild Seite - S 20 A -). Die NF-Vorstufe Rö $72 I I$ verstärkt die vom Z wischenfrequenzTeil kommende NF-Spannung. Auf der Sekundärseite des in ihrem Anodenkreis liegenden Transformators $\operatorname{Tr} 7$ wird die Ausgangsspannung über ein symmetrisches -Glied ($R 441$... 443) an die Buchse " Leitungsausgang 600 Ohm " geleitet. Diese Spannung kann über den Brückengleichrichter Gl 16 in Stellung " 28 " des Überwachungsschalters $S 11$ am Instrument J_{2} gemessen werden.

Über den Koppelkondensator C 1022 gelangt die Anodenwechselspannung der NF-Vorstufe auch an den Regler R 447 NF-Regelung und von da an das Steuergitter der NF-Endstufe Rö 75. Dort wird das NFSignal (je nach Stellung des Reglers R 447) nochmals verstärkt, sodass auf der Sekundärseite des Ausgangstrafos $\operatorname{Tr} 8$ bezw. an den Buchsen " Kopfhörer " an der Frontplatte bezw. den Buchsen " Leistungsausgänge " an der Rückseite des Gerätes bis zu. 2 W Ausgangsleistung an 15 Ohm abgenommen werden kann. Auch diese Ausgangsspannung kann uber den Brückengleichrichter Gl 17 in Stellung " 29 " des Jberwachungsschalters S 11 am Instrument J2 gemessen werden.

Die 1. Stufe des im gleichen Baustein untergebrachten A1-Überlagerers ist der A1-Oszillator Rö 76I。 Dieser ist wieder als Oszillator mit abgestimmtem Gitterkreis und induktiver Rückkopplung an der Anode ausgefuhrt. Mit Hilfe des Drehkondensators C 1053 =(Drehknopf "Jberlagerer" an der Frontplatte) ist der Oszillator im Bereich $300 \mathrm{kHz} \pm 3 \mathrm{kHz}$ abstimmbar. Mit der Achse dieses Kondensators ist der Schalter S 10 gekuppelt, welcher beim Drehen der Achse im Uhrzeigersinn vom linkén Anschlag ($=$ Stellung " Aus ") nach rechts (Eichung - 3 kHz ... 0 ... +3 kHz) das Relais Rs H zum Anziehen bringt. Dieses schaltet mit seinem Kontakt $h 1$ den Schwingkreis an die Röhre und schließt mit Kontakt h2 gleichzeitig den Kathodenwiderstand R 456 kurz, sodass die Röhre schwingen kann. Ein weiterer Kontakt von S 10 lässt das Relais Rs G im Regelverstärker (siehe weiter unten) anziehen, wodurch die Regelspannungsdiode Rö $73 I$ von Mittelwert-
auf Spitzengleichrichtung umgeschaltet wird. Bei Betätigung der Taste S 2" Abstimmkontrolle " bezw. S 8 " Eichquarz 300 kHz " wird das Relais Rs H (nicht jedoch Rs G!) zum Abfallen gebracht. Dadurch wird Rö $76 I$ wieder als Verstärker geschaltet, d.h. der Kathodenwiderstand wird wieder eingeschaltet, der Schwingkreis wird vom Gitter abgeschaltet und dafür die vom Eichoszillator (siehe Punkt 8) kommende Frequenz von $300,0 \mathrm{kHz}$ auf das Gitter geleitet.

Die vom Röhrensystem Rö 76I abgegebene Ausgangsspannung wird uiber das System Rö $76 I I$ " Auskopplung A_{1}-Uberlagerer " und von da an eine Anzapfung des letzten ZF-Bandfilters (zwischen 4. ZF-Stufe und Demodulator) geleitet und gelangt dort zusammen mit dem ankonmenden ZF-Signal an die Demodulatordiode (siehe oben, Punkt 6). Vom Gitterkreis der 4. ZF-Stufe gelangt das ZF-Signal auch an den 1. Regelverstärker $R \ddot{\partial} 71$, welcher es nochmáls auf den erforderlichen Wert verstärkt. Der Verstärkungsfaktor dieser Stufe wird. vom Werk mit dem regelbaren Kathodenwiderstand R 403 eingestellt. Über ein weiteres Bandfilter wird das Signal an den als KathodenAusgangsverstärker geschalteten 2. Regelverstärker Rö̈ $72 I$ geleitet, welcher für den Transformator L 112 und die nachfolgende Schaltung eine niederohmige Spannungsquelle darstellt.

Die in Serie zur Sekundärwicklung von L112 geschaltete Regelspannungsdiode $R \ddot{O} 73 I$ richtet die angelieferte $Z F-S p a n n u n g$ gleich und gibt, sobald der Wert der am Spannungsteiler R 414 ... 418 abgegriffenen Vorspannung (Verzögerungsspannung) überschritten wird, eine negative Regelspannung " Rsp.I" ab. Beim Empfang von A1-getasteten Signalen wird(über den Schalter S 10 " Uberlagerer ") der A_{1}-Uberlagerer eingeschaltet und auch das Relais Rs G zum Anziehen gebracht. Mit seinen Arbeitskontakten schaltet dieses die Arbeitsweise der Regelspannungsdiode von Mittelwert-auf Spitzengleichrichtung um. Damit wird erreicht, dass die Regelspannung beim Einsetzen jedes einzelnen Tastzeichens nicht erst langsam auf den Normalwert anwächst, sondern sofort den Signalen folgen kann. (Die Umschaltung erfolgt durch Veränderung der Zeitkonstante $=$ Kurzschliessen des Serienwiderstandes R 417 und Abschaltung des Kondensators C 1014. Gleichzeitig wird auch die Verzögerungsspannung entsprechend durch Kurzschliessen von R 416 erhöht).

Die Regelspannung durchläuft die Ablöse-Diode Rö 73II. Diese ermöglicht die direkte Parallelschaltung der Regelspannungen mehrerer Empfänger beim Diversity-Empfang (Buchsen " Regelspannung "), ohne' daß ein besonderes Ablösegerät benötigt wird. Wenn von außen eine Regelspannung zugeführt wird, welche größer ist als die mit Rö 73I gebildete, so sperrt die Ablöse-Diode und nur die von außen zugeführte Regelspannung bleibt auf die übrige Regelschaltung wirksam.

Die Zeitkonstante der Regelspannungen kann mit dem Schalter S 6 " Regelzeitkonstante " durch Zuschalten der Kondensatoren C 1013 und C 1012 von 0,1 Sekunden auf 1 Sekunde bezw. 10 Sekunden vergrößert werden. (Durch Parallelschalten der Regelspannungen mehrerer Empfänger bei Diversity-Empfang verändert sich die Zeitkonst. nicht, da mit den Kondensatoren auch die Innenwiderstände der Regelschaltungen parallelgeschaltet werden. Voraussetzung: gleiche Empfängertype mit gleicher Einstellung).

Der Schalter S 7 " Regelung " hat 3 Stellungen: "Hand/Hand+Autom. /Autom. ". In der Stellung " Hand " wird die von Rö $73 I$ abgegebene Regelspannung abgeschaltet und die Verstärkung des Gerätes (unabhängig von der einfallenden Feldstärke) lediglich durch die am Regler R 605 " HP-Regelung " eingestellte Vorspannung bestimmt. In der Stellung "Automatik " wird das Gerät durch die vom Eingangssignal abhängige Regelspannung geregelt. In der Stellung "Hand + Automatik " wird der am Regler R 605 eingestellten festen Regelspannung die von Rö $73 I$ gelieferte Regelspannung addiert, wobei die automatische Regelung nur dann wirksam wird, wenn die gebildete Regelspannung die an R 605 eingestellte Spannung übersteigt. Diese Betriebsart ist besonders günstig, wenn Bänder zu überwachen sind, in denen nur zeitweilig Signale eingeschaltet werden. Bei der Uberwachung ist es dann möglich, den Störpegel auf ein erträgliches $M a ß$ herabzuregeln und trotzdem das Signal (das natürlich stets den eingestellten Schwellwert übersteigen muß) mit den Vorteil der konstanten NF-Ausgangsspannung (automatische Regelung!) zu empfangen.

Die Regelspannung wird vor der Ablöse-Diode auch über den Gleichrichter Gl 15 und die Vorwiderstände R 420 und R 607 an das Instrument J 2 "HF-Eingangsspannung " geleitet. Dieses zeigt bei der Regelungsart (Schalter S 7 " Regelung " ${ }^{\text {() " Automatisch " }}$ grob die Eingangsspannung an, bei der Regelart " Hand + Autom. "
erhält es über den Gleichrichter Gl 24 die am Regler R 605 " HF-Regelung " eingestellte Vorspannung. (Die Gleichrichter Gl 15 und Gl 24 verhindern eine gegenseitige Störung der Regelspannung und der eingestellten Vorspannung). Es zeigt dann ohne Signal den Pegel an, oberhalb dessen Wert automatisch geregelt wird. Bei vorhandenem Signal wird dessen Wert angezeigt, sobald es den Schwellwert übersteigt. In der Schalterstellung " Hand " ist die Skala linear geeicht.

Hinter dem Schalter S 7 " Regelung " wird die von der Regelspannungsdiode (bezw. von außen)zugeführte Regelspannung "Rsp I " direkt an die Steuergitter der 2. und 3. 2F-Stufe geführt. Am Spannungsteiler R $428 / \mathrm{R} 427$ wird $1 / 3$ der Spannung als Regelspannung " $1 / 3$ Rsp I " an die 1. ZF-Stufe, ein noch kleinerer Teilbetrag (abgegriffen an R.427) als Regelspannung " $1 / 5$ Rsp I " an die 4. ZF-Stufe geleitet. Die Regelspannung Rsp I wird auch über den Vorwiderstand R 426 an die Kathode der Begrenzer-Diode Rö 74 I geleitet, deren Anode uber einen (vom Werk eingestellten) und an einer stabilisierten Spannung von - 85 V liegenden Spannungsteiler R47(im HF-Teil) u.R425 negativ vorgespannt wird.*) tberschreitet die (negative) Regelspannung an der Kathode das Potential an der Anode, so wird die Diode leitend und begrenzt den Maximalwert der Kathodenspannung auf den an $R 425$ eingestellten Wert. Diese Spannung wird als Regelspannung " Rsp I begrenzt " zur Regelung der 1. Mischstufe verwendet. Die volle Regelspannung Rsp I wird auch uber den Widerstand R 429 an die Anode der Verzögerungsdiode Rö 74II geleitet, welche gleichzeitig über R 430 vom Spannungsteiler R 431 ... 433 eine positive Verzögerungs-Spannung zugeführt bekommt. Auch an die Kathode wird von einem Abgriff von R 433 eine etwas kleinere positive Kompensations-Spannung geleitet. Die Diode führt daher x) einen Ruhestrom Uberschreitet die zugeführte Regelspannung den Betrag der Verzögerungsspannung, so wird die Diode gesperrt. Die an der Anode der Verzögerungsdiode zur Verfügung stehende verzögerte Regelspannung Rsp II wird an die HF-Stufe geleitet, welche also erst von einer gewissen Empfangsfeldstärke ab (mit einer gegenüber Rsp I etwas verringerten Regelsteilheit) geregelt wird. *) Im Bereich IV wird der maximale Wert dieser negativen Vorspannung durch die Zuschaltung eines (im HF-Teil liegenden) Parallelwiderstandes zum R 425 des Spannungsteilers herabgesetzt, um in diesem Bereich eine günstigere Lage des Arbeitspunktes für ein Optimum an Kreuzmodulationsfestigkeit zu erreichen.
x) bei fehlendem HF-Eingangssignal

8. Eichoszillator (Hierzu Ubersichtsstromlauf Bl. 1)

Der Eichoszillator besteht aus einem 300 kHz -Quarzoszillator und einer Verzerrerstufe und gibt (bei Betätigung der entsprechenden Tasten) an seinen Ausgängen einerseits ein Frequenzspektrum mit einem Frequenzabstand von 300 kHz an den Empfängereingang, andererseits die Grundwelle des Quarzes (300 kHz) ab, welche über die Röhren des A_{1}-Uberlagerers in das letzte ZF-Filter eingespeist wird. Dadurch ist es möglich die Eichung des Empfängers auf dem gesamten Bereich mit Quarzgenauigkeit zu prüfen, da die Grundwelle des Quarzes mit seinen im Empfänger wieder auf 300 kHz umgesetzten Oberwellen durch " Einpfeifen " verglichen wird. Ausserdem kann die Grundwelle des Quarzes = Sollwert der ZF direkt mit dem ankommenden $H F / Z F-S i g n a l$ zur Schwebung gebracht werden, sodass eine äusserst exakte Abstimmung des Empfängers ermöglicht wird.

Bei dem 300 kHz -Oszillator Rö 31 I ist der Quarz in Huth-Kühn-Schay tung zwischen Gitter und Kathodeder Röhre geschaltet. Er wird dabei in Serienresonanz ${ }^{*}$) erregt. Seine genaue Frequenz wird mit dem Trimmer C 403 eingestellt. Die gewonnene quarzstabilisierte Frequenz wird einerseits an den A1-Überlagerer (s.u. Punkt 7) zur Einspeisung in die ZF (und gegf. auch direkt an eine Ausgangsbuchse " Ausfang 300 kHz ") geleitet, andererseits in der Verzerrerstufe Rö 31II, bestehend aus der Anordṇung GI 3 - Rö 31II zu einem Frequenzspektrum " verzerrt " und gleichzeitig verstärkt. Das Spektrum wird dann zum niederohmigen Empfängereingang geleitet.

Beide Stufen erhalten ihre Anodenspannung erst, wenn die Tasten S 8 " Eichoszillator 300 kHz " oder S 9 " Abstimmkontrolle ". gedrückt werden. In beiden Fällen wird das Relais Rs H im A1-Uberlagerer am Ziehen verhindert (auch wenn der Schalter S 10 " Uberlagerer " eingeschaltet ist), sodass der $A_{1}-$ Oszillator als Verstärker für die angelieferte Frequenz von 300 kHz arbeitet. Beim Drücken der Taste " Eichquarz 300 kHz " zieht ausserdem das Relais Rs A im HF-Teil, sodass gleichzeitig das Frequenzspektrum statt des niederohmigen Antenneneingangs an das Eingangsbandfilter der HF-Stufe gelangt.
*) genauer: die erzeugte Frequenz liegt in der Nähe der Serienresonanz

9. Netzteil (hierzu Ubersichtsstromlauf B1. 4)

Das Netzteil liefert alle vom Empfänger benötigten Gleich- und Wechselspannungen.

Die Netzspannung gelangt von der Netzbuchse über die mehrstufige HF-Verdrosselung und den Betriebsstufenschalter S_{4} mit den Stellungen "Aus/Vorheizen/Ein (hell)/Ein (dunkel)" (siehe Punkt 1) an den Netztransformator Tr1. Dieser hat eine Primärwicklung $1 \ldots 6$ mit Anzapfungen für Netzspannungen von 115 V , $125 \mathrm{~V}, 220 \mathrm{~V}$ und 235 V . Eine weitere Anzapfung (150 V) dient zur Speisung des Lüftermotors.

Auf der Sekundärseite befinden sich zwei Wicklungen mit 6,3 v~ (Wicklung $21 . .22=\mathrm{H} 1$, Wicklung $23 . .24=\mathrm{H} 2$) welche die Heizung der Röhren liefern.

Eine weitere Wicklung ($7 . .8$) mit 6,0 V~ dient zur Speisung der Skalenbeleuchtungslämpchen.

Die Wicklung 11.. 12 mit 3 V~ dient zur Ansteuerung der Fanghilfsstufen im Steuerteil und ist mit R510 zur Feinregulierung einstellbar ausgeführt.

Die Wicklung 13..14 dient in den Stellungen "Ein (hell)" und "Ein (dunkel)" des Schalters S 4 zur Speisung der parallelgeschalteten Grätzgleichrichter Gl21...23, welche über eine Siebkette C1108/L121/C1109 eine Anodenspannung von +220 V abgeben. Die Wicklung 18.. 19 liefert in den Schaltstellungen "Ein" (dunkel und hell) - S 4/7 - über den Gleichrichter Gl18 und die entsprechenden Siebglieder (C1110, 1111, R508, 509) die durch die Glimmstabilisator-Röhre Rö81 stabilisierte Gleichspannung von +150 V . Diese Spannung wird als Anodenspannung für die 1. Mischstufe, den Hauptoszillator, die Hauptoszill.-Auskopplung und die 2. Mischstufe, desgl. als Schirmgitterspannung für die ZF-Stufen 1...4 und als Vorspannungsquelle für die Steuerverstärker 1... 3 verwendet.

Die Wicklung 16..17 liefert über den Einweg-Gleichrichter Gl20 über den Widerstand R507 mit Hilfe des Stabilisators Rö82 eine stabilisierte negative Vorspannung von - 85 V , welche als Vorspannung für die Begrenzerdiode und die Fanghilfsstufen 1 und 2 verwendet wird.

Von dieser Spannung wird über den Vorwiderstand R501 eine wei-
tere Spannung von - 30 V erzeugt, welche an die Regler "HF-Regelung" und "Störbegrenzung" geleitet wird.

Die Wicklung 9.. 10 liefert über den Gleichrichter Gl19 (in Brückenschaltung) eine Gleichspannung von +24 V , die als Speisespannung für alle Relais des Empfängers verwendet wird. Uber den Spannungsteiler R503... 505 wird davon eine Gleichspannung von +10 V gewonnen, welche als Vorspannung für die Nachstimmdiode und den Steuerleitungsverstärker dient.

10. Frontplatte

Die Funktion der auf der Frontplatte befindlichen Schaltorgane wurde bei der Besprechung der ubrigen Bausteine jeweils mit einbezogen.
11. Rahmen mit Gesamtverdrahtung

Die wichtigsten Verbindungen wurden bereits bei den einzelnen Bausteinen behandelt. Der Uberwachungsschalter S11 und seine Funktion wird nachfolgend gesondert besprochen.

Zur Überwachung der wichtigsten Spannungen, der Ströme der einzelnen Röhrenstufen und der NF-Ausgangsspannungen am Leitungs-und am Leistungs(=Abhör-) Ausgang dient der Schalter S 11 " Uberwachung " mit seinem Instrument J 2 " V/Röhrenkontrolle ".

Es ist bei der Anzeige der Röhrenströme jedoch zu beachten, daß in Abhängigkeit vom gewählten Frequenzbereich, der Betriebsart, der Einstellung des Empfängers, der Stärke des empfangenen Signals usf. manche Rö́hren abgeschaltet, in verschiedenen Funktionen betrieben oder verschieden stark geregelt sein können.

$\begin{aligned} & \text { Schalter- } \\ & \text { stellung } \end{aligned}$		Uberwachung	
	Pos.	Bezeichnung	Bemerkung
1	+220 V	Anodenspannung	
2	Rö 11	HF-Stufe	(Keine Anzeige bei Anschl. eines Sendertastrelais!)
3	RO゙ $12 I I$	1.Mischstufe Einkopplung	
4	Rö 41II	2. Mischstufe Einkopplung	
5	RÖ 76I+II	Eichosz.-Verst.I+II bzw. A1-Oszillator	
6	R6: $31 \mathrm{I}+\mathrm{II}$	Eichosz. + Verzerrer	Nur b.Drücken d.Taste "Eichgenerator" oder "Abistimmkontrolle"
7	+150 V	Stabilisierte Spannung	
8	Rö $13 I I$	Röhrenkontrolle	
9	-	frei	
10	Rö 21	Steueroszillator	Nur i.d.Bereichen IV mit XII nicht b."Hauptosz.fremd"
11	Rö $22 I+I I$	Steuerosz.Verstärker I+II	Nur i.d. Bereichen IV mit XII nicht b. "Hauptosz.fremd"
12	-	frei	
13	RÖ 43	Hauptoszillatorverstärker	Nur i.d.Bereichen V mit XII nicht b. "Hauptosz. fremd"
14	Rö 47I+II	Steuerleitgs.Fanghilfeverst.	Nur i.d.Bereichen V mit XII nicht b. "Hauptosz. fremd"
+ 15	-	frei	
16	Rö 42	Quarzoszillator	Nur i.d.Bereichen V mit XII

siehe RÖ 11!

Nur in d.Bereichen V mit XII

Prüfung: ohne Signal, $\pm 150 \mathrm{~Hz}$ Bandbreite, autom. Regelung,
Bereich VI bei $10,6 \mathrm{MHz}$
RH 4100
B1. 31

w. \downarrow.

$=. \lambda . x$

Steuerosz.

ceuerce Vers: I
sheueri a Verst:II
(11)

Eichosz

Uberwa

 standard crystal 300 kc

Ubersp.Schutz over-voltage
protection prorection z

UBERSICHTS-STROMLAUF
 SCHEMATIC DIAGRAM
 PLANCHE GENERALE

ANTENNE
50....75 Ω

$=-$ Teil (Bi.i)
S1 $\cdots,-.$, S1 Frequenzbereich

(B1.1)
RÖ 12 (HF-Teil)
Rsp.!
begr.
(Bi.2)
Rö 51 (Selektionst.)

(B1.1)
(Bi.1)
(Eichoszillator)(HF-Teil)
$\begin{gathered}\text { Rö31I }+1] \\ +220 \mathrm{~V}\end{gathered} /$ RsA
$\frac{4.8 a}{C 1031}---\ldots-\infty-\left.1\right|_{C 1035}-1$

NF -Eingang fremd

ZF-Teil (BI.6) / Regel-u. NF-Verst. (BI.7) / Frontplatte (BI.9)

Kastengestell

II. 1
II. 1 MONTAGEANWEISUNG (Hierzu siehe auch Seite B 10 bzw. B 11 !)

1. Einstellung auf die Netzspannung:

Das Gerät wird im Werk auf 220 V~eingestellt. Bei anderen Netzspannungen ist der Spannungswähler am Netztransformator (zugänglich auf der Empfängerrückseite) auf die entsprechende Spannung umzuschalten. Desgleichen sind die Sicherungen Si 2 und Si 3 (auf der Empfängerunterseite) durch andere Werte zu ersetzen. (Netzschalter auf "Aus" !). Alle Sicherungen sind von hinten zugänglich.

Netzspannung	Sicherungen Si
235 V	1 A
220 V	1 A
125 V	2 A
115 V	2 A

Erst nach dieser Umschaltung ist das Netzkabel am Gerät und an der Netzsteckdose (Schuko-Kupplung!) einzustecken.
2. Anschluß der Betriebserde:

Die Erdleitung wird mittels eines Bananensteckers an eine der Erdbuchsen auf der Anschlußplatte angeschlossen.

3. Anschluß der Antenne:

Hochohmige Antennen werden mittels eines Bananensteckers an die gleichartig bezeichnete Buchse auf der Anschlußplatte (s.a. Bild Seite - B 10 - weiter unten) angeschlossen. Koaxiale Antennenzuleitungen ($Z=50 \ldots 75$ Ohm) werden mittels eines Steckers $4 / 10$ (VG 95241) an die entsprechend bezeichnete Buchse angeschlossen. Für symmetrische Antennenzuleitungen bzw. stark abweichende Werte des Wellenwiderstandes werden bes. Vorschalttransformatoren geliefert.

4. Anschluß der Kopfhörer bzw. Lautsprecher:

Es können an den Buchsen der Frontplatte 2 Kopfhörer (breit-u.schmalbandig)angeschlossen werden. Auf der rückwärtigen Anschlußplatte befinden sich ein 4 mm -Buchsenpaar und eine Tuchelbuchse, an die ein Lautsprecher (15 Ohm) mittels Bananensteckern bzw. mit einem Tuchelstecker T $3079=$ R\&S FTS 20315 angeschlossen werden kann.
II. 2

II. 2 BEDIENUNGSANWEISUNG

Nachdem der Empfänger gemäß Montageanweisung vorbereitet und angeschlossen wurde, kann er mit dem Netzschalter S 4 eingeschaltet werden. Nach etwa einer Minute ist das Gerät betriebsbereit. Je nach der vorhandenen Raumtemperatur ($=$ Temperatur des ausgeschalteten Empfängers) wird für die Erwärmung des Gerätes auf die normale Betriebstemperatur eine Zeit von etwa 10 Minuten bis zu einer Stunde benötigt. Erst dann ist die volle Frequenzgenauigkeit des Gerätes gewährleistet: Es empfiehlt sich daher vor der ersten Aufnahme des Funkverkehrs den Empfänger eine entsprechende Zeit vorher einzuschalten (Schalterstellung"Ein") und ihn in kürzeren Betriebspausen mit der Stellung " Vorheizen " des Netzschalters durchlaufen zu lassen; Es können dann die Vorteile des Gerätes bei Beginn des Empfangsbetriebes voll ausgenützt werden. .

Die Bedienung des Gerätes ergibt sich aus der nachfolgenden $\mathrm{Be}-$ sprechung der Bedienungsorgane auf der Frontplatte bezw. der rückwärtigen Anschlussplatte (Reihenfolge jeweils von links nach rechts).
A) Frontplatte (Hierzu Bild Seite - B9-)

1. Frequenzskala:

Die Frequenzablesung geschieht auf der langen Grobskala und auf der runden Feinskala. Im eigentlichen Kurzwellenbereich von 3,1 ... 30,1 MHz wird eine Frequenz einfach aus der Addition von Grobskala und Feinskala bestimmt. Die Grobskala ist dabei in MHz und die Feinskala in kHz geeicht; (Frequenzbereiche IV bis einschliesslich XII, wobei die römischen Ziffern schwarz ausgelegt sind). In den unteren 3 Frequenzbereichen I, II und III (römische Zahlen sind rot ausgelegt) ist die Feinskala n i cht in kHz geeicht, sie kann als Interpolations-Skala mit 100 Skalenteilen benutzt werden. Die Grobskala, die in diesen Bereichen nur 0,6 bezw. 1 MHz Bandbreite umfasst, ist hier die Ableseskala.

2. Linkes Kontrollinstrument ("NF-Pegel ")

Das linke Kontrollinstrument J 1 zeigt den NF-Ausgangspegel und zwar in der Stellung " U~600 Ω " des Uberwachungsschalters den Pegel am Leitungsausgang und in der Stellung " U~ 15Ω " des

Uberwachungsschalters den Pegel am Leistungsausgang. Das Feld dient in Verbindung mit dem Überwachungsschalter zur Kontrolle der Anodenspannungen bezw. zur Kontrolle der Röhrenströme.
3. Uberwachungsschalter: (Siehe hierzu Blatt - B 8 -)

Der Schalter S 11 " Uberwachung " besitzt 29 Stellungen, deren einzelne Bedeutungen aus dem Uberwachungsplan (siehe Seite

- B 8 -) hervorgeht. Die 220 V Anodenspannung wird in Stellung 1, die stabiliserte 150 V Spannung wird in Stellung 7 geprüft.

4. Abstimmkontrolle:

Bei Betätigung des Druckknopfes S 9 " Abstimmkontrolle " wird die 300 kHz Quarzfrequenz des Eichoszillators in die ZF eingeblendet, so da β durch Bildung des Schwebungsnulls mit dem Empfangssignal die Abstimmung kontrolliert werden kann. Der Druckknopf " Abstimmkontrolle " kann eingerastet werden.

5. Eichquarz 300 kHz :

Die Drucktaste S 8 " Eichquarz 300 kHz " schaltet den Eichoszillator mit dem Verzerrer ein. Gleichzeitig wird durch ein HF-Relais der Antenneneingang kurzgeschlossen und die 300 kHz -Oberwellen werden an den Eingang gegeben. Ausserdem wird eine $300 \mathrm{kHz-Span-}$ nung in die Zwischenfrequenz eingeblendet. Dadurch ist es möglich, die Skala in Abständen von 300 kHz zu kontrollieren. Die Stellen der Skala an denen ein 300 kHz -Eichpunkt liegt, sind dae durch gekennzeichnet, $d a B$ die entsprechenden Skalenstriche etwas unter den Grundstrich der Skala verlängert sind'. Bei Betätigung der Drucktaste " Eichquarz " wird in jedem Falle die Regelungsart "Hand" eingeschaltet, so daß eine Ubersteuerung des Empfängers vermieden wird, es muß jedoch der Handregler " HFRegelung " etwas geöffnet werden. Auch die Drucktaste " Eichquarz" kann durch Drehung eingerastet werden. Der Zeiger der Feinskala kann mit dem Schraubenzieher an der Öffnung links neben dem Knopf etwas korrigiert werden. Diese Korrektur wird aber kaum notwendig werden.

6. Rechtes Kontrollinstrument ("Eingangsspannung"):

Das rechte Kontrollinstrument J 2 "Eingangsspannung" ist für die Regelartenschalterstellung "Automatik" grob in Eingangsspannung geeicht. In der Schalterstellung "Hand + Automatik" zeigt das Instrument ohne Signal den Pegel an, oberhalb dessen Wert automatisch geregelt wird. Bei vorhandenem Signal wird dessen Eingangsspannung angezeigt, sobald es die Schwelle übersteigt. In der Schalterstellung "Hand" ist die Skala linear geeicht. Siehe auch Punkt 15.

7. Kopfhörerbuchsen:

Es können zwei parallel geschaltete, hochohmige Kopfhörer (breitund schmalbandig) angeschlossen werden. Die Leistungsausgänge auf der Rückseite des Gerätes sind niederohmig.
8. NF-Regelung:

Mit dem Regler R 447 "NF-Regelung" werden die Kopfhörerausgänge sowie die Leistungsausgänge geregelt. Der Leitungspegel wird von der Regelung nicht beríhrt.

9. Netzschalter:

In der Stellung "Vorheizen" des Netzschalters S 4 sind alle Röhren geheizt, beim Ubergang auf die Betriebsstellung "Ein" werden die Anodenspannungen hinzugeschaltet, Die Betriebsstellung "Ein" ist zusätzlich in zwei Schalterpositionen unterteilt, in denen wahlweise die Skalenbeleuchtung hell und dunkel geschaltet werden kann. Es kann unmittelbar auf "Ein" geschaltet werden. Die Stellung "Vorheizen" ist für Betriebspausen gedacht, nach denen das Gerät sofort betriebsbereit sein soll.
10. A1-Überlagerer:

Am linken Anschlag = Stellung "Aus" des Knopfes S 10/C 1053 "Uberlagerer" ist dieser ausgeschaltet. Von der Mittelstellung "O" aus kann er $u m \pm 3 \mathrm{kHz}$ verstimmt werden.
11. ZF-Bandbreite:

Die ZF-Bandbreite, welche praktisch die Gesamtbandbreite des Gerätes bestimmt, kann mit dem Schalter $S 2$ " ZF -Bandbreite" in 6 Stufen von $\pm 0,15 \cdots \pm 6 \mathrm{kHz}$ geregelt werden.

12. Regelzeitkonstante:

Die Zeitkonstante der Regelung ist mit dem Schalter S 6 " Regelzeitkonstante " in 3 Stufen " $0,1 / 1 / 10=$ Sekunden " umschaltbar. Während die Stellung " 0,1 Sekunde " im wesentlichen für Tele-fonie-Empfang bestimmt ist, sind die Steliungen " 1 Sekunde " und " 10 Sekunden " hauptsächlich für Telegrafie-(A1-) Empfang vorgesehen. Gelegentlich kann es beim Auftreten von starkem selektivem Schwund jedoch vorteilhaft sein, auch TelefonieSendungen mit langer Zeitkonstante zu empfangen.

13. Störbegrenzung:

Am linken Alschlag des Knopfes S 5/R 602 " Störbegrenzung " ist die Begrenzerstufe ausgeschaltet. Nach Betätigung des Schalters durch Rechtsdrehung des Knopfes und des damit verbundenen Reglers wird die Störbegrenzung wirksamer, wobei das Maß der Störbegrenzung nach den zulässigen Verzerrungen bestimmt werden kann.

14. HF-Regelung:

Der " HF-Regler " R 605 bestimmt die Verstärkung des Gerätes bei den Schalterstellungen des Regelschalters " Hand " und " Hand + Automatik " (siehe Punkt 15).

15. Regelungsart:

Der Schalter S 7 " Regelung " bestimmt die Art der Regelung und hat die Stellungen " Hand ", " Hand + Automatik" und " Automatik " . Die Stellungen " Hand " bezw. " Automatik." entsprechen den üblichen Einrichtungen bei Empfängern. In der Stellung " Hand + Automatik " wird der von Hand eingestellten Regelspannung eine automatische Regelspannung addiert, wobei der Einsatzpunkt der automatischen Regelung durch die Stellung des Handreglers " HF-Regelung " bestimmt wird. Am Eingangsspanng.AnzeigeInstrument stellt sich beim Fehlen von Signalspannung eine Zeigerstellung ein, die der Signalspannung entspricht, von der ab nach oben die automatische Regelung beginnt. Mit der Regelart " Hand + Automatik " ist es z.B. möglich, den mittleren Störpegel in einem zu überwachenden Band herabzusetzen, (soferne die erwarteten Signale keine zu kleinen Werte besitzen) und trotzdem jedoch den Vorteil der automatischen Regelung ($=$ konstante NFAusgangsspannung) auszunutzen.

16. Abstimmung:

Der Kurbelknopf dient zur Grobabstimmung, der äußere Knopfring zur Feinabstimmung der Frequenz des Empfängers.

17. Frequenzbereich:

Die zwölf Frequenzbereiche des Empfängers können mit dem Schalter S 1 " Frequenzbereich " fortlaufend nach rechts und links eingestellt werden, die Nummer des eingestellten Bereiches erscheint im langen Skalenfenster am rechten Ende in römischen Ziffern.

B2_Anschlussplatte auf der_Rückseite_(Hierzu Bild Seite - B 10 -):

1. Anschluss für Sendertastrelais:

Das Buchsenpaar " Anschluß für Sendertastrelais " ist für die Verwendung beim Break-in-Verkehr vorgesehen. Werden 4 mm -Stecker (normale Netz-bezw. Bananenstecker) eingesteckt, so ist die Speisespannungszuführung der Vorröhre und 1. ZF-Röhre unterbrochen; die Verbindung wird erst durch einen Ruhekontakt des Sendertastrelais hergestellt.
2. Leitungsausgang $600 \mathrm{hm}:$

Der Pegel an der 3-poligen Tuchelbuchse " Leitungs-Ausgang 600 Ohm " ist auf 0 db eingestellt und kann durch SchraubenzieherPotentiometer an der hinteren Innenseite des Gerätes verändert werden. (Anschlüsse 1 u. $2=N F ; 3=$ Schirm, zugehöriger Stecker $=$ Tuchel T $3079=$ R\&S FTS 20315).
3. NF-Eingang:

Der Geräteflansch 4/10 "NF-Eingang" ist vorgesehen als Anschluss für ein $z u$ verstärkendes Niederfrequenzsignal bei der Verwendung des Empfängers als NF-Verstärker oder bei der Verwendung von äußeren Demodulationseinrichtungen, z.B. dem Seitenbandwähler NZ 1. Beim Einfügen eines Steckers 4/10 (VG 95241) wird die Verbindung zum eigenen Demodulationsteil des Empfängers unterbrochen.
4. Leistungsausgänge 15 Ohm:

Die " Leistungsausgänge 15 Ohm " = eine 3-polige Tuchelbuchse und ein normales $4 \underset{2}{\mathrm{~mm}}$-Buchsenpaar dienen zum Anschluss von Laut-
sprechern oder anderen niederohmigen Verbrauchern. Die Ausgänge
sind parallelgeschaltet. (An der Tuchelbuchse: $1 u_{0} 2=N F$,
$3=$ Schirm, zugehöriger Stecker Tuchel T $3079=$ R\&S FTS 20315).
Die 4 mm-Buchse " Antenne hochohmig " dient als Eingang für hoch-
ohmige Antennen, der Ceräteflansch $4 / 10$ ist für ein koax.Anschluß-
kabel ($Z=50 \ldots 750 \mathrm{hm}$) vorgesehen (Anschlußstecker
VG 95241).
An den Geräteflansch "Hauptosz. fremd" kann für Frequenz-
meßzwecke und ähnliche Anwendungen, gelegentlich auch bei Diver-
sity-Empfang, die Hauptoszillatorfrequenz für den Empfänger fremd
eingespeist werden. Durch Drücken der darüber befindlichen Taste
S 14 wird der eigene Haptoszillator abgeschaltet und der Weg für
den Anschluss einer fremden Oszillatorspannuag freigegeben.
Für Präzisionsfrequenzmessungen kann an den Geräteflansch 4/0" 3 MHz
fremd " die $3 \mathrm{MHz-Quarzfrequenz} \mathrm{von} \mathrm{aussen} \mathrm{eingespeist} \mathrm{werden}$.
Die darüber befindliche Taste $S 12$ ist dabei zu drücken. (Bei
nicht gedrückter Taste kann an der Buchse eine Frequenz von 3 MHz
abgenommen werden).
8. Ausgang erstes Mischrohr:

An den Geräteflansch $4 / 10$ "Ausgang 1. Mischrohr " wird ein Teil der Spannung vom Kathodenwiderstand des ersten Mischrohres nach außen geführt. Dadurch kann für Spezialzwecke eine Zwischenfrequenzspannung ausgekoppelt oder eine Signalspannung eingekoppelt werden.

2. Hauptoszillatorausgang:

An den Geräteflansch $4 / 10$ "Hauptoszillator-Ausgang " steht für Meßzwecke die Ausgangsspannung des Hauptoszillators zur Verfügung, welche bei Diversity-Empfang als " Master-Oszillator-Frequenz verwendet werden kann.
10. Eichoszillatorausgang 300 kHz :

An den Geräteflansch 4/10 "Eichoszillator Ausgang 300 kHz " ist die Frequenz des Eichquarzes (300 kHz) zugänglich.

11. Regelspannung:

An den beiden parallel geschalteten Geräteflanschen 4/10"Regelspannung " steht die Regelspannung zur Verfügung. Sie kann dort zu Registrierzwecken verwendet werden. Es ist jedoch an den gleichen Buchsen möglich, mehrere Empfänger zum DiversityEmpfang zusammenzuschalten. Dazu wird die Buchse des einen Empfängers mit der Buchse des anderen Empfängers über ein Steckerkabel mit Sterkern 4/10 (VG95241) verbunden. Dabei ist es beliebig, ob zwei oder ob drei Empfänger verbunden werden. Die Regelzeitkonstante bleibt in jedem Falle erhalten. Die Regelspannungen lösen sich automatisch ab, sodass kein äußeres Diversity-Ablösegerät erforderlich ist, wenn die Niederfre-quenz-Ausgangsspannungen der Empfänger addiert werden, d.h. die NF-Ausgänge parallelgeschaltet werden.

Steueroszillatorausgang:

An den Geräteflansch $4 / 10$ "Steueroszillator-Auggang " ist die Steueroszillatorspannung (Frequenzbereich $3,4 \ldots 6,4 \mathrm{MHz}$) zugänglich. Sie kann u.a. zu Frequenzfernmessungen mit elektronischen Zählern dienen.

13. ZF-Ausgang 300 kHz :

An den Geräteflansch 4/10"ZF-Ausgang 300 kHz " kann die ZF-Spannung abgenommen werden. Die Ausgangsspannung beträgt $0,1 \mathrm{~V}$, $R_{i}=\approx 250$ Ohm. Dieser Ausgang dient zum Anschluss von Zusatzgeräten, $z . B$. für Seitenbandwähler, Telegrafie-Demodulations Geräte und dgl.

UBERWACHUNGSSCHALTER S 11

Schalter stellung		Uberwachung			
	Pos.	Bezeichnung	Bemerkung		
1	+220 V	Anodenspannung	Rö 11		HF-Stufe
:---					
3					

Nur i.d.Bereichen IV mit XII nicht b. "Haptosz. fremd"

Nur i.d.Bereichen IV mit XII nicht b. "Hauptosz. fremd"

Nur i.d.Bereichen V mit XII nicht b. "Hauptosz. fremd"

Nur i.d.Bereichen V mit XII nicht b. "Hauptosz. fremd"

Nur i.d.Bereichen V mit XII
siehe Rö 11 !

Nur i.d.Bereichen V mit XII

- Prüfung: ohne Signal, $\pm 150 \mathrm{~Hz}$ Bandbreite, autom. Regelung, Bereich VI bei $10,6 \mathrm{MHz}$

RH 4100

4) Ausführung EK 07/2 (EK 07-71)
(Stecker Amphenol, Ausgangsspg.
wie bei EK 07-34)

241160 gr
III. WARTUNGSANWEISUNG

1. Röhrenwechsel:

Alle Röhren des Empfängers können ohne weiteres (gegen Röhren der gleichen Type) ausgewechselt werden. Ein Nachstimmen von Kreisen ist normalerweise nicht nötig. Lediglich nach dem Wechsel der Röhre des Steueroszillators $=$ Rö 21 kann es in extremen Fällen nötig werden. Den Zeiger der Feinskala an der Öffnung links neben dem Abstimmknopf etwas korrigieren (Einpfeifen auf Schwebungsnull bei gedrückter Taste " Eichquarz 300 kHz "). Die Röhren des Steueroszillators sind unter einer abschraubbaren Haube untergebracht und sind nach Abheben der Haube leicht zugänglich. Die gleichfalls dort untergebrachte " Silikagel "-Patrone braucht unter einigermassen normalen Betriebsbedingungen nicht gewechselt bezw. getrocknet werden. Nur wenn sich die Einlaufzeit des Empfängers auffällig verlängert, ist die Patrone zu kontrollieren. Falls sich die Masse weiß bezw. hellrosa verfärbt haben sollte, so kann die Patrone auf einem Lötkolben getrocknet werden, bis sich die Farbe in blau umgewandelt hat.

2. Lüfter:

Die Lager des Lüftermotors sind für mehrjährigen Betrieb ausreichend gefettet. Wenn das Lüftergeräusch $z u$ laut wird, ist er zur Reparatur ins Werk einzuschicken.
3. Mechanische Prüfung:

Bei Betrieb des Gerätes in mobilen Anlagen ist in mehrmonatigen Abständen der sichere Sitz aller steckbaren Bauelemente zu prufen.

Vervielfältgs.-Pause

Steueroszillator;hierzu Schaltteilliste EK07A BI.17... 19

424; 1254; 5000 S

(12)

49... 54

Regel-u.NF-Verstärker;hierzu Schaltteilliste EK07 A BI.

Zaichn. Nr.

