KURZWELLENEMPFÄNGER

EK 07D/2
EK 07 D2/2

Der KW-Empfänger EK $07 \mathrm{D} 2 / 2$ enthălt als Unterschied zum EK $07 \mathrm{D} / 2$ das stetig regelbare ZF-Filter EK 07-80. Die technischen Unterlagen dazu befinden sich im letzten Teil der Beschreibung, diese ersetzen dann den Abschnitt 7.6.

STETIG REGELBARES ZF-FILTER

zur Verwendung in den Kurzwellenempfängern EK 07; EK 11 und EK 17

15538

Aufgaben und Anwendung

Eeim Empfang von Sendungen im Kurzwellenbereich zeigt sich, daB feste umschaltbare Verte der Bandbreite nicht immer die günstigsten Empfangsergebnisse liefern. Zwischen dem Bandbreitenbedarf der langsamen Telegrafie-A -Sendungen und dem bei Breitband-Telefoniesendungen benötigten kann in Abhängigkeit von der Kodulationsart und von benachbarten Störsignalen jeder Wert optimal sein.

Aus diesem Grund entstand das stetig regelbare ZF-Filter der Type EK 07-80 zur Verwendung in den R\&S KW-Empfängern EK 07, EK 11 und EK 17. Mit diesem Filter ist es möglich; die Bandbreite zwischen $\pm 0,15$ und $\pm 6 \mathrm{kHz}$ kontinuierlich zu verändern, wobei die Steilheit der Flankon während dos Regelvor:gangs erhalten bleibt. Das noue ZF-Filter kann ar Stelle des bisher meist verwondeten Filters EK 07-5 mechanisch und eloktrisch ohno fbeleicharboiten auscetauscht worden. Es verbessert gleichzeitig die Selektion gegenüber Nachbarsendern beträchtlich, ds seine Flunken wesentiich steilor verlaufen. Durch die Verwending von in der Fraquenz tief liegonden Selektionskreisen ist ouch oine besonders gute Stebilität gegenuber Temperaturschwankungen und Alterung gewährleistet.

```
Technische Daten
Mittenfrequenz ............ 300 kHz
```



```
    (gilt für Type EK 07-80) bar. Mit Rasterung bei:
                                    \pm0,15; \pm0,30; \pm0,75; 土 1,5;
                                    \pm 3,0; \pm6,0 kHz
Welligkeit im DurchlaB-
bereich ................... < 3 dB
Flankensteilhoit furr einen
Abfall von j dB zu 60 dB ... < < 1200 Kz; unabhängig von der
                                    eingestellten Bandbreite
Elektrische Anschlüsse
und Daten .................. passend für die oben genannten
                                    Empfänger .
Mechanische Abmessungen..... passend für die oben genannten
                                    Empfänger
```

Abweichende technische Daten der Ausführung mit in Stufen schaltbaren Bandbreiten, Type EK 07-81

Bandbreite bei ; dB Abfall... 6 Bandbreitenstufen nach Wunsch des Kunden im Bereich von $\pm 0,15$ bis $\pm 6,0 \mathrm{kHz}$ einstellbar, oder vom Werk eingestellt auf: $\pm 0,15 ; \pm 0,30 ; \pm 0,75 ; \pm 1,5 ;$ $\pm 3,0 ; \pm 6,0 \mathrm{kHz}$.

Schaltung und Wirkungsweise

Um dịe kontinuierliche Bandbreitenregelung zu erzielen, wird ein doppeltes Mischverfahren angewendet. Die Zwischenfrequenz der genannten Kurzwelien-Empfänger von $j 00 \mathrm{kHz}$ wird dazu in eine Frequenzlace z wischen 24 und 30 kHz umgesetzt, über einen , O kHz-Tiefpaß mit steiler Flanke gefuhrt und dann mit der gleichen Oszillator-Frequenz in die ursprünglache ZF-Lage zuriickgemischt. Es folgt eine zweite, im wesentlichen gleich oufgebaute Selektionseinheit, bei der nun aber ein Umsetzer-0szillator verwendet wird, der auf der entgegengesetzten Seite der Null-Zwischenfrequenz liegt. Dadurch wird bewirkt, daß das Signal, welches in der ersten Selektionseinheit auf einer Seite des Signalbandes von Störern gereinigt wurde, jetzt auch auf der anderen selektiert wird. Durch Verschiebung der beiden Umsetzerfroquenzen im entgegengesetzten Sinn wird das Signal jeweils näher oder weniger nahe an die Flanke der $30 \mathrm{kHz-Tief-}$ pässe herangeschoben. Dadurch entsteht die Möglichkeit, die Bandbreite kontinuierlich bei konstanter Flankensteilheit zu regeln.

Gewisse Bandbreitenstellungen können durch Rasterungen des Os-zillator-Drehkondensators aufgefunden werden, so daß die Orientierung rascher möglich wird.

Da für einige Funkdienste eine beschränkte Anzahl von Bandbreitenstellungen genügen, die jedoch für die genannten Dienste optimal eingestellt werden müssen, gibt es eine Ausführungsform des Filters (Typ EK 07-81), bei der die genannten Oszillatoren mit Fest-Kondensatoren in Stufen geschaltet werden können, wobei es jedoch jetzt ohne weiteres möglich ist, die Bandbreiten durch geeignete Wahl der Fest-Kondensatoren in fur den vorliegenden Dienst optimaler Weise festzulegen.

Auch fir den Fall der Verwendung der hochwertigen Filter in Fernsteueranlagen mit den Empfängern EK 07 ist die Verwendung der Selektionsfilter mit festen vorgewählen Schaltstufen empfehlenswert.

Durchlaßkurven bei einer eingestellten Bandbreite von $\pm 0,15: \pm 0,30: \pm 0,75: \pm 1,5: \pm 3,0$ und $\pm 6,0 \mathrm{kHz}$

Stetig regelbares ZF-Filter
(Vereinfachtes Blockschaltbild)

Kurzwellenempfängers

Der Kurzwellenempfänger Type $\mathrm{aK} 07 \mathrm{D} / 2$ kann als Betriebs- und Uberwachungsempfänger in festen und beweglichen Funkstellen eingesetzt werden. Aufgrund seiner besonderen Eigenschaften ist er insbesondere auch in Grobstationen bei schwierigen Empfangsverhältnissen fur kommerzielle Telegrafie und Telefonieübertragungen verwendbar. Er eignet sich ohne weiteres zum Empfang amplitudenmodulierter Sender der Betriebsarten A1 bis A4. Mit Zusatzgeräten wird er aber auch für den Empfang frequenzmodulierter Signale (F1 bis F4 und.F6) und von Einseitenbandsendungen ($A 3 a$ und $A 3 b$) geeignet.

Die besonderen Eigenschaften sind: hohe Treffsicherheit besser als 1 kHz ; hohe Skalenauflösung von $300 \mathrm{~Hz} / \mathrm{mm}$ Skalenlänge im ganzen Kurzwellenbereich; ubersichtliche lineare Frequenzskala, wobei nur diajenige Skala des jeweils eingeschalteten Teilbereiches (von je 3 MHz Um fang) sichtbar ist, so daB eine Verwechslung von Skalen völlig ausgeschlossen ist; hohe Selektion und Spiegelselektion durch drei abgestimmte Vorkreise; hohe Kreuzmodulationsfestigkeit und gute Selektion gegenüber starken Ortssendern; 6 wählbare Zwischenfrequenz-Bandbreiten von $\pm 0,15 \mathrm{kHz}$ bis $\pm 6 \mathrm{kHz}$; regelbaren (und abschaltbaren) Störbegrenzer; besonders gute Amplitudenregelung mit fünf verschiedenen und zum Teil unterschiedlich verzögerten Regelspannungen; in drei Stufen veränderbare Regelzeitkonstante ($0,1 / 1 / 10 \mathrm{sec}$); umschaltbare Regelart (Hand, Hand + Autom., Autom.) mit einstellbarer Signalschwelle. DiversityAblösung durch Verbindung der Regelspannungsausgänge zweier oder dreier Empfänger ist möglich. Für den Gegensprechverkehr auf einer Frequenz ist ein Sendertastrelais vorgesehen. Zudem besteht die Möglichkeit, die erste und z weite Z wischenfrequenz ($3,3 \mathrm{MHz}$ und 300 kHz) zu entnehmen und Zusatzgeräte anzuschlieBen, wie z.B. unseren Einseitenband-Demodulator Type NZ 10 oder das Telegrafie-Demodulationsgerät Type NZ 07.

Dieser Empfänger kann über ein (demnächst lieferbares) Steuergerät auch uber gröBere Strecken fernbedient werden, und zwar uber eine postübliche Zweidrahtleitung. Uber diese Leitung wird gleichzeitig der NF-Ausgangspegel des Empfängers zum Steuerort zurückgefuhrt. Ein Verlust an Einstell- und Treffsicherheit tritt dabei nicht ein; die Skalenstellung wird zum Steuerort zurückgemeldet.
2. Eigenschaften
2.1. Elektrische Daten
Gesamtfrequenzbereich $0,5 \ldots 30,1 \mathrm{MHz}$
Hauptbereich A. 3 1...30,1 MHz 3 1...30,1 MHz
Grobskalen: Bereich IV 3,1... 6,1 MHz
V 6,1... 9,1 MHz
VI 9,1...12,1 MHz
VII 12,1...15,1 MHz
VIII 15,1...18,1 MHz
IX 1,1...21,1 MHz
X 21,1...24,1 MHz
XI 24,1...27,1 MHz
XII 27,1...30,1 MHz
Feinskala O... 100 kHz
Ablesegenauigkeitetwa $0,3 \mathrm{kHz} / \mathrm{mm}$ Skalenlänge imganzen Hauptbereich
Treffsicherheit nach 30 Minuten Einlaufzeit im Bereich von
$15^{\circ} \ldots 25^{\circ} \mathrm{C}$ Raumtemperatur besser als 1 kHz
Hauptbereich B. $0,5 \ldots 3,1 \mathrm{MHz}$
Grobskalen: Bereich I $0,5 \ldots 1,1 \mathrm{MHz}$
II 1,1...2,1 MHz
III. 2,1...3,1 MHz
Feinskala. mit 100 Skalenteilen
(zur Interpolation)
Für beide Hauptbereiche gilt:
Betriebsarten A1, A2, A3, A4
mit Zusatzgeräten F1, F2, F3, F4, F6, A3a, A3b
Zwischenfrequenz
in den Bereichen I...IV................... 300 kHz
V...XII 1. $2 \mathrm{FF}=3,3 \mathrm{MHz}$
2. $\mathrm{zF}=300 \mathrm{kHz}$

